Cell Phone (& Smartphone) Radiation Poses a Serious Biologic Health Risk
"Cherry (2002) predicted that since electrical workers and physiotherapists are
occupationally exposed to electromagnetic fields that are about a million times
higher than the Schumann Resonance signal, they would have higher rates of cancer,
cardiac reproductive and neurological effects. Multiple independent epidemiological
studies confirm that this is true. It is also scientifically sensible and proven
that placing a cellular telephone next to your head, producing a signal around a
billion times stronger than the Schumann Resonance signal, causes serious
alterations of brain activity, leading to elevated rates of a road accidents,
headaches, nausea, dizziness, loss of concentration and memory, DNA damage and
enhanced cell death rates, and significant increases in brain cancer rates."
[Ken Adachi Note, Nov. 19, 2007: I came across the name of Dr. Neil J. Cherry (1946 -2003) of Lincoln University in New Zealand while researching Schumann frequencies and the heightened susceptibility to bodily damage from Electromagnetic Radiation (EMR), especially from microwaves of the cell phone variety. While I found Dr. Cherry's name and a few studies (latest 2002) ascribed to him, I noticed that the links leading to his studies always came up "not found" or "404". When I did a search on the link url at archive.org, it also came up "not found'.
Now I'm getting a little suspicious that someone doesn't want me to find any studies authored by Dr. Neil Cherry on the health risks associated with microwave radiations, so I spent more time digging on the internet. It took a couple of hours, but I eventually found what I was looking for. I won't indicate here where I found them because I'm concerned that those links may disappear too. However, I will reprint this 2001 report from Dr. Cherry that makes it abundantly clear just how risky and dangerous it is to use a cell phone on any regular basis-especially for children who stand the greatest chance of short and long term damage over any other group of cell phone users.
I'm under the impression that Dr. Cherry died sometimes after 2002. As of yet, I do not know the details of his death, nor his age, but I plan to look into it. It's obvious from the voluminous amount of hard scientific data quoted by Dr. Cherry -in all of his studies- that using cell phones is extremely risky to one's health, and it would seem that the continued existence of Dr. Cherry may have been an 'inconvenient ' risk for the cell phone industry and the secret government agendas connected with the proliferation of cell phone towers around the world.
2) The second 7 minute video clip from Australia is a news report on the connection between cell phone usage and cancer inducement in young children. (Update May 2018: This video was taken down, but I will look for another location that may have it posted...Ken Adachi)
[Update, July 6, 2012: Both of these videos are no longer are available on Youtube. The note says:
"This video is no longer available because the uploader has closed their YouTube account.
Sorry about that."
Maybe the video demonstrated too VISUALLY just how seriously you are radiating your brain whenever you hold a cell phone to your ear and somebody doesn't want the public to see that. Study Neil Cherry's report carefully and then ask yourself: Do you really want to continue to use a Smart phone, or worse, give one to your child?
By Dr Neil Cherry <neil.Cherry@ecan.govt.nz>
Lincoln University Canterbury, New Zealand
http://educate-yourself.org/cn/neilcherrycellphonerisks07may01.shtml#top
May 7, 2001
Facebook Censorship
To post this article on Facebook, link to the TinyUrl seen below. Facebook will remove any article identified as coming from educate-yourself.org http://tinyurl.com/kglwuf9
The Issue
Thousands of people are using cell phones for hours each day. They are exposing a very sensitive organ, their brain, to higher mean intensities than military personnel are exposed to when repairing radar. The military personnel show significant increases in cancer and a wide range of illnesses. Even at the very low mean levels that people experience living within 10 km of radio and TV towers, significant increases in cancer has been observed.
Analogue cell phones emit an analogue modulated RF/MW signal similar to an FM radio or TV signal. The digital cell phones radiate a pulse RF/MW signal similar to radar. Biological and epidemiological effects from EMR exposure across the spectrum show the same or similar effects. Many people continue to drive while talking on their cell phones. Attention deficit and neurological effects on the user's brain make accidents much more likely.
Very young children and teenagers are becoming regular to heavy users of cell phones while their brains and bodies are in a much more vulnerable state than elderly people. With cancer and neurodegenerative disease latencies of decades, the possible adverse effects will take some time to become evident. By which time it will be too late for thousands of people.
There is growing concern about cell phone interference with cardiac pacemakers. If cell phone signals can interfere with an electronic pacemaker, then it is likely to also interfere with human hearts that are arrhythmically unstable.
Biophysical Principles
Radiant energy is absorbed into human bodies according to three main processes. The first is the Aerial Effect where bodies and body parts receive and absorb the RF/MW signal with resonant absorption that is a function of the size of the body parts and the wavelength of the RF/MW signal. For an adult male about 1.8 m tall the optimal absorption frequency is close to 70 MHz, Figure 1. This has a wavelength of 4.3m. The body acts like a half-wave dipole interacting strongly with a half wavelength close to the body size. A monkey interacts with a wavelength of 1m and a half wavelength of 0.5m. This is similar to the absorbency of a human child. The Aerial effect also relates to body parts such as arms and heads. A typical adult head has a width of 15 cm. This is a half wavelength for a 1 GHz microwave signal, close to that used by most cell phones.
Figure 1: Average SAR for 3 species exposed to 10 W/m2 with E vector parallel to the long axis of the body, from Durney et al. (1978).
Cellphone-type radiation is in the 0.9 to 1.8 GHz range, i.e. 0.9 x 109 to 1.8 x 109 Hz. Hence according to Figure 1 neither children nor adults are close to the optimum absorption rate but babies and infants bodies, whose dimensions lie between "monkey" and "mouse", are close to the optimal absorption for cell phone-type radiation.
A person with a height h (m), acting as an aerial in an RF electric field E (V/m) at a carrier frequency f (MHz), has a current induced in them which flows to earth through their feet, given by, Gandhi et al. (1985):
Ih = 0.108 h2 E f (mA)
This induced current flows mainly through high water content organs. In flowing to ground the current passes through the ankles. These consist mainly of low conductivity bones and tendons and have an effective cross-sectional area of 9.5 cm2 for an adult, despite the actual physical area is of the order of 40 cm2. The formula for Ih also allows for the effective absorption area of the person, which is somewhat greater than their actual cross-sectional area, because of the attraction of the surrounding field to an earthed conductor. These aerial considerations are more pertinent to whole-body exposures to cell sites.
Cell phone aerials from digital phones typically occupy the length of the body of the phone and extend a few centimeters out of the top of the phone body. Cellphone radiation for the phone's aerial is quite close to the user's head and can be intense enough to cause a warming sensation.
Figure 2: The dielectric constant and conductivity of typical biological tissue as a function of frequency, Schwan (1985).
The second mechanism involves the coupling of the signal to the tissue as the signal penetrates the tissue and interacts with the cells and layers of tissue. This process is related to the dielectric constant and conductivity of the tissue types, which vary significantly with the carrier frequency, ref. Figure 2. The third biophysical absorption process involves resonant absorption by biological systems in the brain and cells. Resonant absorption occurs when a system with a natural frequency is stimulated by an imposed signal of a similar frequency or harmonic frequency. Radio and TV receivers use both the aerial principle and the resonant absorption principle. The aerial resonantly absorbs the carrier frequency and carries it as an induced current to the receiver. Here a tuned circuit oscillating at the same frequency resonantly absorbs the carrier wave and uses decoding circuitry to extract the encoded message contained in the amplitude, frequency or digital modulation imprinted on the carrier wave.
Figure 3: Comparison of the frequency spectra of the human EEG from 260 young males showing the 5%, 50% and 95%ile bands, adapted from Gibbs and Gibbs (1951), and Schumann Resonance peaks, from Polk (1982).
Figures 4 and 5 confirm the relationship shown in Figure 3, using independently derived spectra of the daytime human EEG, Figure 4 and the Schumann Resonance spectrum, Figure 5. The figures have been aligned to have a common horizontal frequency scale.
Figure 4:
A typical EEG spectrum, with the Schumann Resonance peaks superimposed.
Figure 5: Daytime Schumann Resonance Spectrum, Polk (1982).
Figures 3-5 show that the frequency range of the primary peaks of the Schumann Resonances coincide with the frequency range of the human EEG. Upper Schumann peaks also associated with small peaks in the EEG. This shows a resonant interaction and supports the probability of an actual use by the brain or the Schumann Resonance signal. Figure 6 shows that this occurs in a study showing a significant dose-response correlation between the intensity of the 8-10 Hz Schumann Peak and human reaction times.
Figure 6: Human reaction times as a function of Schumann Resonance 8-10 Hz Relative Intensity, for 49,500 subjects tested during 18 days in September 1953, at the German Traffic exhibition in Munich. Derived from data in Figure 3 of König (1974b). Trend: t = 10.414, 2-tailed p<0.001.
Cellphone radiation is shown to interact with human EEG patterns and to alter them and to change reaction times. The GSM signal has a pulse frequency of 217 Hz and a modulation at 8.34 Hz. This is in the Schumann Resonance and EEG spectral primary frequency range.
Effects shown for electromagnetic radiation, especially radio and radar signals, but also electrical occupations:
Such signals have been shown to affect:
Neurological Activity:
1. Alter brain activity, including EEG and reaction times, memory loss, headaches, fatigue and concentration problems, dizziness (the Microwave Syndrome), Gordon (1966), Deroche (1971), Moscovici et al. (1974), Lilienfeld et al. (1978), Shandala et al. (1979), Forman et al. (1982), Frey (1998).
2. Impair sleep and learning, Altpeter et al. (1995), Kolodynski and Kolodynska (1996)
3. Increase permeability of the blood brain barrier (a mechanism for headache), Frey et al. (1975), Alberts (1977, 1978) and Oscar and Hawkins (1977).
4. Alter GABA, Kolomytkin et al. (1994).
5. Increase neurodegenerative disease including Alzheimer's Disease, Sobel et al. (1995, 1996), Savitz et al. (1998a,b)
6. Highly significant Increased permeability of the blood brain barrier for 915 MHz radiation at SAR =0.016-0.1 (p=0.015) and SAR = 0.1-0.4 (p=0.002); Salford et al. (1994).
7. Increase the Suicide Risk, Baris and Armstrong (1990), Perry et al. (1991), Van Wijngaarden et al. (2000).
Cardiological Activity:
1. Alter blood pressure and heart rhythm (heart rate variability) Bortkiewicz et al. (1995, 1996, 1997) and Szmigielski at al (1998).
2. Increases Heart Disease and heart attack mortality, Forman et al. (1986), Hamburger, Logue and Silverman (1983), Savitz et al. (1999)
Immune System Activity:
1. Impairs the immune system Quan et al. (1992), Dmoch and Moszczynski (1998), Bruvere et al. (1998)
Reproductive Activity:
1. Reduces sperm counts in radar exposed military personnel, Weyandt et al. (1996)
2. Increases miscarriage and congenital abnormalities, Kallen et al. (1982), Larsen et al. (1991), Ouellet-Hellstrom and Stewart (1993).
3. Doubles the incidence of twins in the families of radar exposed personnel, Flaherty (1994).
4. Significantly alters the leaf structure of plants exposed to a radar, Magone (1996).
5. Significantly reduces the radial growth of pine trees, Balodis et al. (1996).
6. Reduced fertility of mice exposed to an RF field (27.12 MHz), Brown-Woodman et al. (1989).
7. Increased fetal/embryo lethality in mice exposed to 2.45 GHz microwaves, Nawrot, McRee and Galvin (1985).
8. Radio exposures cause complete infertility in mice over 3 to 5 generations at mean exposure levels of 1.05 and 0.17mW/cm2, respectively, Magras and Xenos (1997).
Genotoxic Activity:
1. Reduce melatonin and alter calcium ions, Abelin (1999), Burch et al. (1997, 1999) Bawin and Adey (1976), Blackman et al. (1988, 1989, 1990)
2. Enhances heat shock proteins at extremely low exposure levels in a highly reproducible manner showing that they are not stimulated by heat but in reaction to a 'toxic' protein reaction, Daniells et al. (1998), and down to 0.001W/kg (0.34mW/cm2) using 750MHz microwaves, de Pomerai (2000).
3. Damages chromosomes. Heller and Teixeira-Pinto (1959), Tonascia and Tonascia (1966), Yao (1982), Garaj-Vrhovac et al. (1990, 1991, 1992, 1993, 1999), Timchenko and Ianchevskaia (1995), Balode (1996), Haider et al. (1994) and Vijayalaxmi et al. (1997) have reported significant chromosome aberrations from RF/MW exposures. In the Mar/Apr 1999 edition of Microwave News it is reported that Drs Tice, Hook and McRee
4. Alters DNA, Ali and Behari (1994).
5. Breaks DNA strands, Lai and Singh (1995, 1996, 1997).
6. Alters gene transcription activity, Phillips et al. (1992, 1993).
7. Neoplastically transform cells [pre cancer cellular stage], Balcer-Kubiczek and Harrison (1991).
8. Enhances cell death in a dose response manner for signal intensity and exposure time, Garaj-Vrhovac et al. (1991
9. Enhances cell proliferation in a dose-response manner for exposure time, Mattei et al. (1999).
10. Enhances Ornithine Decarboxylase (ODC) activity , a measure of cell proliferation rate, Byus et al. (1988), Litovitz et al. (1997).
11. Enhances free radicals, Phelan et al. (1992).
12. Increased cancer in rats and mice, Prausnitz and Susskind (1962), Szmigielski et al. (1988) and Chou et al. (1992)
Cancer Epidemiology:
Increases the incidence of many types of cancer, including leukaemia, brain tumor, testicular cancer, genitourinary and breast cancer, Robinette et al. (1980), Milham (1985, 1988), Szmigielski (1996), Hocking et al. (1996), Dolk et al. (1997 a, b), Beall et al. (1996), Grayson (1996), Thomas et al. (1987), Lilienfeld et al. (1978), Zaret (1989), Davis and Mostofl (1993), Hayes et al. (1990), Tynes et al. (1996), Cantor et al. (1995), and many others.
These biological and health effects are consistent with the biological understanding that brains, hearts and cells are sensitive to electromagnetic signals because they use electromagnetic signals for their regulation, control and natural processes, including those processes monitored by the EEG and ECG. There is overwhelming evidence that EMR is genotoxic, alters cellular ions, neurotransmitters and neurohormones, and interferes with brain and heart signals, and increases cancer.
Cell Phone Radiation Research:
For years the cell phone companies and government authorities have assured us that cell phone are perfectly safe. For example, they claim that the particular set of radiation parameter associated with cell phones are not the same as any other radio signal and therefore earlier research does not apply. They also mount biased review teams who falsely dismiss any results that indicate adverse biological and health effects and the flawed pre-assumption that the only possible effect is tissue heating. There is a very large body of scientific research that challenges this view. Now we have published research, primarily funded by governments and industry that shows that cell phone radiation causes the following effects: Neurological Activity:
Alters brain activity including EEG, Von Klitzing (1995), Mann and Roschkle (1996), Krause et al. (2000).
Disturbs sleep, Mann and Roschkle (1996), Bordely et al. (1999).
Alters sleep EEG after awake exposure, Huber et al. (2000).
Alters human reaction times, Preece et al. (1999), Induced potentials, Eulitz et al. (1998), slow brain potentials, Freude et al. (1998), Response and speed of switching attention (need for car driving) significantly worse, Hladky et al. (1999). Altered reaction times and working memory function (positive), Koivisto et al. (2000), Krause et al. (2000).
Brain cortex interaction as shown by significantly altered human EEG by cellphone radiation, during a 15 minute exposure, Lebedeva et al. (2000).
Weakens the blood brain barrier (p<0.0001): Persson, B.R.R., Salford, L.G. and Brun, A., 1997.
A Fifteen minute exposure, increased auditory brainstem response and hearing deficiency in 2 kHz to 10 kHz range, Kellenyi et al. (1999).
While driving, with 50 minutes per month with a cell phone, a highly significant 5.6-fold increase in accident risk, Violanti et al. (1996); a 2-fold increase in fatal accidents with cell phone in car, Violanti et al. (1998); impairs cognitive load and detection thresholds, Lamble et al. (1999). In a large Canadian study Redelmeier and Tibshirani (1997) the risk of collision when using a cellphone was 4 time higher, RR = 4.3, 95%CI 3.0-6.5. Calls close to the time of collision has RR =4.8 for 5 minutes and RR = 5.9, p<0.001, for 15 minutes.
Significant changes in local temperature, and in physiologic parameters of the CNS and cardiovascular system, Khdnisskii, Moshkarev and Fomenko (1999).
Causes memory loss, concentration difficulties, fatigue, and headache, in a dose response manner, (Mild et al. (1998)). Headache, discomfort, nausea, Hocking (1998).
[White = less than 2 minutes per day
Gray = 2-15 minutes per day
shorter black = 15-60 mins. per day
long black = more than 60 mins/day]
Figure 7: Prevalence of symptoms for Norwegian mobile phone users, mainly analogue, with various categories of length of calling time per day, Mild et al. (1998).
Figure 8: Prevalence of symptoms for Swedish mobile phone users, mainly digital, with various categories of length of calling time per day, Mild et
al. (1998).
These are the same symptoms that have frequently been reported as "Microwave Sickness Syndrome" or "Radiofrequency Sickness Syndrome", Baranski and Czerski (1976) and Johnson-Liakouris (1998).
Cardiac Activity:
1. Cardiac pacemaker interference: skipped three beats, Barbaro et al. (1996); showed interference, Hofgartner et al. (1996); significant interference, p<0.05 Chen et al. (1996); extremely highly significant interference, p=0.0003, Naegeli et al. (1996); p<0.0001, Altamura et al. (1997); reversible interference, Schlegal et al. (1998); significantly induced electronic noise, Occhetta et al. (1999); various disturbances observed and warnings recommended, Trigano et al. (1999)
2, Significantly increases blood pressure, Braune et al. (1998)
Hormone Activity:
1. Reduces the pituitary production of Thyrotropin (Thyroid Stimulating Hormone, TSH):
Figure 9: A significant reduction in Thyrotropin (Thyroid Stimulating Hormone) during cell phone use, de Seze et al. (1998).
2. Reduces melatonin significantly, Burch et al. (1997, 1998). A GSM cellphone reduces melatonin, but not significantly in a very small sample (N=18) of subjects, de Seze et al. (1999)
3. A reported but yet to be published Australian Study, EMRAA News, June 2000, used a Clot Retention Test on blood samples to detect hormonal changes. A group of 30 volunteers used a Nokia 6150 cellphone for 10 minutes on each of two consecutive days. The CRT test showed significant changes in the thyroid, pancreas, ovaries, testes and hormonal balance
Reproductive Activity:
1. Decreases in sperm counts and smaller tube development in rat testes, Dasdag et al. (1999).
2. Increases embryonic mortality of chickens, Youbicier-Simo, Lebecq and Bastide (1998)
Genotoxic Activity:
Breaks DNA strands, Verschaeve at al. (1994), Maes et al. (1997), which is still extremely significant p<0.0001, at 0.0024W/kg (1.2 mW/cm2), Phillips et al. (1998).
Produces an up to three-fold increase in chromosome aberrations in a dose response manner from all cell phones tested, Tice, Hook and McRee, reported in Microwave News, March/April 1999. The findings were the same when the experiment was repeated and Dr Tice is quoted as stating: "There's no way you're going to get positive results twice over four different technologies as a chance result."
Doubles c-fos gene activity (a proto oncogene [cancer causing gene]) for analogue phones and increases it by 41 % for digital phones, Goswami et al. (1999), altered c-jun gene, Ivaschuk et al. (1997), Increased hsp70 messenger RNA, Fritz et al. (1997).
Increases Tumour Necrosis Factor (TNK), Fesenko et al. (1999).
Increases ODC activity, Penafiel et al. (1997).
DNA synthesis and cell proliferation increased after 4 days of 20 min for 3 times/day exposure. Calcium ions were significantly altered, French, Donnellan and McKenzie (1997). Decreased cell proliferation, Kwee and Raskmark (1997), Velizarov, Raskmark and Kwee (1999)
Doubles the cancer in mice, Repacholi et al. (1997).
Increases the mortality of mobile phone users compared with portable phone users, RR = 1.38, 95%CI: 1.07-1.79, p=0.013, Rothman et al. (1996).
Increases human brain tumor rate by 2.5 times (Hardell et al. (1999)). Associated with an angiosarcoma (case study), Hardell (1999)
Hardell et al. (2000), for analogue phones OR = 2.62, 95%CI: 1.02-6.71, with higher tumour rates at points of highest exposure.
Significantly increases the incidence of eye cancer (Uveal Melanoma), by between OR = 4.2, 95%CI: 1.2-14.5, and OR = 10.1, 95%CI: 1.1-484.4, Stang et al. (2001).
United States, Motorola Study Morgan et al. (2000)
High Exposure RR = 1.07 (0.32-2.66) n = 3
Moderate Exposure RR = 1.18 (0.36-2.92) n = 3
High/Mod vs Low RR = 1.13 (0.49-2.31) n = 6
This project underestimated cancer rates by using a high cancer reference group.
Carlo and Schram (2001) report that in the industry funded WTR (Wireless Technology Research) programme Dr Joseph Roti Roti confirmed the Tice, Hook and McRee research showing that cellphone radiation significantly damaged DNA through observed micronuclei formation.
Muscat et al. (2000) report elevated brain cancer in cellphone users in the United States, with cerebral tumors occurring more frequently on the side of the head where the mobile phone had been used, (26 vs 15 cases, p=0.06) and for a rare brain cancer, neuroepitheliomatous, OR = 2.1, 95%CI: 0.9-4.7. Mean use of cell phones was 2.5 years for cases and 2.2 years for controls, showing that a small increase in cellphone use (0.3 years) produces a large increase in brain cancer risk.
Cell phone users in Denmark Johansen et al. (2001)
Duration of digital subscription
<1 yr
1-2yrs
3 yrs
Relative to reference group SIR
0.7
0.9
1.2
Relative to <1 yr group RR
1.0
1.29
1.71
Other cancers are set out in "Table 2" below. Over 67 % of phone users had used their phones for 2 years or less. The reference group had a higher than average cancer rate than the age range of cell phone users, underestimating the cancer rates. This is shown by Standard Incidence Ratios (SIR) of some groups being as little as 0.6. For example SIR for users for <1 year is 0.7.
Table 2 shows that even with little cellphone use, and even with the use of a high cancer reference group, there are several elevated cancers approaching significance: Testicular cancer SIR = 1.12, 95%CI: 0.97-1.30, Cervical cancer, SIR = 1.34, 95%CI: 0.95-1.85, Female Pharynx cancer, SIR 2.43, 95%CI: 0.65-6.22, Esophagus cancer, SIR = 1.53, 95%CI: 0.31-4.46 and female breast cancer, SIR = 1.08, 95%CI: 0.91-1.26.
Conclusions:
To date over 50 studies have shown adverse biological or human health effects specifically from cell phone radiation. These research results to date clearly show that cell phones and cell phone radiation are a strong risk factor for all of the adverse health effects identified for EMR because they share the same biological mechanisms. The greatest risk is to cell phone users because of the high exposure to their heads and the great sensitivity of brain tissue and brain processes. DNA damage accelerates cell death in the brain, advancing neurodegenerative diseases and brain cancer. Brain tumour is already an identified risk factor. Cell phones are carried on people's belts and in breast pockets. Hence liver cancer, breast cancer and testicular cancer became probable risk factors.
Altered attention and cognition, as well as the diversion of talking on a phone while driving is a significant risk factor for accidents and fatal accidents.
Some cardiac pacemakers are susceptible to active cell phone signals, recommending keeping cell phones away from hearts and pacemakers.
Because the biological mechanisms are shown and EMR has been observed to significantly increase the following effects, there is extremely strong evidence to conclude that cell phones are a risk factor for breast, liver, testicular and brain cancer. It is also probable that we will observe a very wide range of other effects including cardiac, neurological and reproductive illness and death. Since cell phone radiation cause many cell damages including DNA and chromosome damage, all of these effects will also be caused by cell sites.
Dose-response studies of neurological, cardiac, reproductive and cancer effects in human populations all point to a near zero exposure level of no effect, Cherry (2000). Since cellphone radiation mimics RF/MW radiation effects which mimics ELF biological and health, the adverse effects occur across the spectrum and includes cellphone radiation, with a safe exposure level of zero.
Hence a risk reduction and public health protection based on keeping exposure below a level that doubles the risk, identifies 0.1 mW/cm2 as the maximum acceptable exposure. This should allow a mean life-time exposure to be less than 0.01mW/cm2 which is necessary to reduce the risk of neurological effects. The lower level is necessary because of the exquisite sensitivity of the brain.
References:
Abelin, T., 1999: "Sleep disruption and melatonin reduction from exposure to a shortwave radio signal". Seminar at Canterbury Regional Council, New Zealand. August 1999.
Alberts, E.N., 1977: "Light and electron microscopic observations on the blood-brain barrier after microwave irradiation. In Symposium on Biological effects and measurement of Radio Frequency/Microwaves, HEW Publication (FDA) 77-8026, pp 294-309.
Alberts, E.N., 1978: "Reversibility of microwave induced blood-brain barrier permeability". Radio Science Supplement.
Altpeter, E.S., Krebs, Th., Pfluger, D.H., von Kanel, J., Blattmann, R., et al., 1995: "Study of health effects of Shortwave Transmitter Station of Schwarzenburg, Berne, Switzerland". University of Berne, Institute for Social and Preventative Medicine, August 1995.
Altamura G, Toscano S, Gentilucci G, Ammirati F, Castro A, Pandozi C, Santini M, 1997: "Influence of digital and analogue cellular telephones on implanted pacemakers". Eur Heart J 18(10): 1632-4161.
Balcer-Kubiczek, E.K. and Harrison, G.H., 1991: "Neoplastic transformation of C3H/10T1/2 cells following exposure to 120Hz modulated 2.45 GHz microwaves and phorbol ester tumor promoter". Radiation Research, 125: 65-72.
Balode, Z., 1996: “Assessment of radio-frequency electromagnetic radiation by the micronucleus test in Bovine peripheral erythrocytes”. The Science of the Total Environment, 180: 81-86.
Balodis, V., Brumelis, G., Kalviskis, K., Nikodemus, O., Tjarve, D. and Znottina, V, 1996: "Does the Skrunda Radio Location Station diminish the radial growth of pine trees?". Sci. Tot Environ 180: 57-64.
Barbaro V, Bartolini P, Donato A, Militello C, 1996: "Electromagnetic interference of analog cellular telephones with pacemakers". Pacing Clin Electrophysiol 19(10): 1410-1418.
Baris, D. and Armstrong, B., 1990: "Suicide among electric utility workers in England and Wales". Br J Indust Med 47:788-789.
Bawin, S.M. and Adey, W.R., 1976: “Sensitivity of calcium binding in cerebral tissue to weak electric fields oscillating at low frequency”. Proc. Natl. Acad. Sci. USA, 73: 1999-2003.
Beall, C., Delzell, E., Cole, P., and Brill, I., 1996: "Brain tumors among electronics industry workers". Epidemiology, 7(2): 125-130.
Blackman, C.F., Benane, S.G., Elliott, D.J., and Pollock, M.M., 1988: “Influence of Electromagnetic Fields on the Efflux of Calcium Ions from Brain Tissue in Vitro: A Three-Model Analysis Consistent with the Frequency Response up to 510 Hz”. Bioelectromagnetics, 9:215-227.
Blackman, C.F., Kinney, L.S., House, D.E., and Joines, W.T., 1989: “Multiple power-density windows and their possible origin”. Bioelectromagnetics, 10: 115-128.
Blackman, C.F., 1990: "ELF effects on calcium homeostasis". In "Extremely low frequency electromagnetic fields: The question of cancer", BW Wilson, RG Stevens, LE Anderson Eds, Publ. Battelle Press Columbus: 1990; 187-208.
Borbely, AA, Huber, R, Graf, T, Fuchs, B, Gallmann, E, Achermann, P, 1999: Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. Neurosci Lett 275(3):207-210.
Bortkiewicz, A., Zmyslony, M., Palczynski, C., Gadzicka, E. and Szmigielski, S., 1995: "Dysregulation of autonomic control of cardiac function in workers at AM broadcasting stations (0.738-1.503 MHz)". Electro- and Magnetobiology 14(3): 177-191.
Bortkiewicz, A., Gadzicka, E. and Zmyslony, M., 1996: "Heart rate in workers exposed to medium-frequency electromagnetic fields". J Auto Nerv Sys 59: 91-97.
Bortkiewicz, A., Zmyslony, M., Gadzicka, E., Palczynski, C. and Szmigielski, S., 1997: "Ambulatory ECG monitoring in workers exposed to electromagnetic fields". J Med Eng and Tech 21(2):41-46.
Braune, S, Wrocklage, C, Raczek, J, Gailus, T, Lucking, CH, 1998: Resting blood pressure increase during exposure to a radio-frequency electromagnetic field. Lancet 351(9119):1857-1858.
Brown-Woodman, P.D., Hadley, J.A., Richardson, L., Bright, D. and Porter, D., 1989: "Evaluation of reproductive function of female rats exposed to radiofrequency fields (27.12 MHz) near a short-wave diathermy machine". Health Physics 56(4): 521-525.
Brueve, R., Feldmane, G., Heisele, O., Volrate, A. and Balodis, V., 1998: "Several immune system functions of the residents from territories exposed to pulse radio-frequency radiation". Presented to the Annual Conference of the ISEE and ISEA, Boston Massachusetts July 1998.
Burch, JB, Reif, JS, Pitrat, CA, Keele, TJ, Yost, MG, 1997: Cellular telephone use and excretion of a urinary melatonin metabolite. Abstract of the Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, delivery & Use of Electricity, San Diego, CA, 1997, pp.110.
Burch, J.B., Reif, J.S., Yost, M.G., Keefe, T.J. and Pittrat, C.A., 1998: "Nocturnal excretion of urinary melatonin metabolite among utility workers". Scand J Work Environ Health 24(3): 183-189.
Byus, C.V., Kartun, K., Pieper, S. and Adey, W.R., 1988: "Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters". Cancer research, 48(15): 4222-4226.
Cantor, K.P., Stewart, P.A., Brinton, L.A., and Dosemeci, M., 1995: “Occupational exposures and female breast cancer mortality in the United States”. Journal of Occupational Medicine, 37(3): 336-348.
Chen WH, Lau CP, Leung SK, Ho DS, Lee IS, 1996: "Interference of cellular phones with implanted permanent pacemakers". Clin Cardiol 19(11): 881-886.
Cherry, N.J., 2000: "Evidence that electromagnetic radiation is genotoxic: the implications for the epidemiology of cancer and cardiac, neurological and reproductive effects". Proceedings of the conference on EMR Health Effects, European Parliament, Brussels. 28th June 2000.
Daniells, C, Duce, I, Thomas, D, Sewell, P, Tattersall, J, de Pomerai, D, 1998: "Transgenic nematodes as biomonitors of microwave-induced stress". Mutat Res 399: 55-64.
Dasdag, S, Ketani, MA, Akdag, Z, Ersay, AR, Sar,i I, Demirtas ,OC, Celik, MS, 1999: Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res 27(3):219-223.
Davis, R.L. and Mostofl, 1993: "Cluster of testicular cancer in police officers exposed to hand-held radar". Am. J. Indust. Med. 24: 231-233.
Deroche, M., 1971: " Etude des perturbations biologiques chez les techniciens O.R.T.F. dans certains champs electromagnetiques de haute frequence". Arch Mal. Prof, 32: 679-683.
De Mattei, M., Caruso, A., Traina, G.C., Pezzetti, F., Baroni, T., and Sollazzo, V., 1999: "Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro". Bioelectromagnetics 20: 177-182.
De Pomerai, D., Daniells, C., David, H., Duce, I., Mutwakil, M., Thomas, D., Sewell, P., Tattersall, J., Jones, D., and candido, P., 2000: "Non-thermal heat-shock response to microwaves". Nature May 25,
de Seze R, Fabbro-Peray P, Miro L, 1998: GSM radiocellular telephones do not disturb the secretion of antepituitary hormones in humans. Bioelectromagnetics 19(5):271-8.
Dmoch, A. and Moszczynski, P., 1998: "Levels of immunoglobulin and subpopulations of T lymphocytes and NK cells in men occupationally exposed to microwave radiation in frequencies of 6-12GHz". Med Pr 49(1):45-49.
Dolk, H., Shaddick, G., Walls, P., Grundy, C., Thakrar, B., Kleinschmidt, I. and Elliott, P., 1997a: “Cancer incidence near radio and television transmitters in Great Britain, I - Sutton-Colfield transmitter”. American J. of Epidemiology, 145(1):1-9.
Dolk, H., Elliott, P., Shaddick, G., Walls, P., Grundy, C., and Thakrar, B.,1997b: “Cancer incidence near radio and television transmitters in Great Britain, II All high power transmitters”. American J. of Epidemiology, 145(1):10-17.
Donnellan M, McKenzie DR, French PW, 1997: Effects of exposure to electromagnetic radiation at 835 MHz on growth, morphology and secretory characteristics of a mast cell analogue, RBL-2H3. Cell Biol Int 21:427-439.
Eulitz, C, Ullsperger, P, Freude, G, Elbert ,T, 1998: Mobile phones modulate response patterns of human brain activity. Neuroreport 9(14):3229-3232.
Fesenko, EE, Makar, VR, Novoselova, EG, Sadovnikov, VB, 1999: Microwaves and cellular immunity. I. Effect of whole body microwave irradiation on tumor necrosis factor production in mouse cells. Bioelectrochem Bioenerg 49(1):29-35.
Flaherty, J.A., 1994: "The effect of non-ionising electromagnetic radiation on RAAF personnel during World War II". Australian Family Physician 23(5): 902-904.
Forman, S.A., Holmes, C.K., McManamon, T.V., and Wedding, W.R., 1982: "Physiological Symptoms and Intermittent Hypertension following acute microwave exposure". J. of Occup. Med. 24(11): 932-934.
Freude, G, Ullsperger, P, Eggert ,S, Ruppe, I, 1998: Effects of microwaves emitted by cellular phones on human slow brain potentials. Bioelectromagnetics 19(6):384-387.
French PW, Donnellan M, McKenzie DR, 1997: Electromagnetic radiation at 835 MHz changes the morphology and inhibits proliferation of a human astrocytoma cell line. Bioelectrochem Bioenerg 43:13-18.
Freude, G, Ullsperger, P, Eggert, S, Ruppe, I, 2000: Microwaves emitted by cellular telephones affect human slow brain potentials. Eur J Appl Physiol 81(1-2):18-27.
Frey, A.H., Feld, S.R. and Frey. B., 1975: "Neural function and behavior: defining the relationship in biological effects of nonionizing radiation". Ann. N.Y. Acad. Sci. 247: 433-438.
Frey, A.H., 1998: "Headaches from cellular telephones: are they real and what are the impacts". Environ Health Perspect 106(3):101-103.
Fritze K, Wiessner C, Kuster N, Sommer C, Gass P, Hermann DM, Kiessling M, Hossmann KA, 1997: Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81(3):627-639.
Garaj-Vrhovac, V., Fucic, A, and Horvat, D., 1990: "Comparison of chromosome aberration and micronucleus induction in human lymphocytes after occupational exposure to vinyl chloride monomer and microwave radiation"., Periodicum Biologorum, Vol 92, No.4, pp 411-416.
Garaj-Vrhovac, V., Horvat, D. and Koren, Z., 1991: "The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese Hamster cells exposed to microwave radiation". Mutat Res 263: 143-149.
Garaj-Vrhovac, V., Fucic, A, and Horvat, D., 1992: The correlation between the frequency of micronuclei and specific aberrations in human lymphocytes exposed to microwave radiation in vitro”. Mutation Research, 281: 181-186.
Garaj-Vrhovac, V., and Fucic, A., 1993: “The rate of elimination of chromosomal aberrations after accidental exposure to microwave radiation”. Bioelectrochemistry and Bioenergetics, 30:319-325.
Garaj-Vrhovac, V., 1999: "Micronucleus assay and lymphocyte mitotic activity in risk assessment of occupational exposure to microwave radiation. Chemosphere 39(13): 2301-2312.
Gibbs, F.A.G. and Gibbs, E.L.G., 1951: "Atlas of electroencephalograph, Volume 1: Methodology and Controls". Addison Wesley Publishing Co. USA.
Gordon, Z.V., 1966: "Problems of industrial hygiene and the biological effects of electromagnetic superhigh frequency fields". Moscow Medicina [In Russian] English translation in NASA Rept TT-F-633, 1976.
Goswami, P.C., Albee, L.D., Parsian, A.J., Baty, J.D., Moros, E.G., Pickard, W.F., Roti Roti, J.L. and Hunt, C.R., 1999: "Proto-oncogene mRNA levels and activities of multiple transcription factors in C3H 10T 1/2 murine embryonic fibroblasts exposed to 835.62 and 847.74 MHz cellular telephone communication frequency radiation". Radiat Res 151(3): 300-309.
Grayson, J.K., 1996: “Radiation Exposure, Socioeconomic Status, and Brain Tumour Risk in the US Air Force: A nested Case-Control Study”. American J. of Epidemiology, 143 (5), 480-486.
Haider, T., Knasmueller, S., Kundi, M, and Haider, M., 1994: “Clastogenic effects of radiofrequency radiation on chromosomes of Tradescantia”. Mutation Research, 324:65-68.
Hamburger, S., Logue, J.N., and Sternthal, P.M., 1983: "Occupational exposure to non-ionizing radiation and an association with heart disease: an exploratory study". J Chronic Diseases, Vol 36, pp 791-802.
Hanson Mild, K, Oftedal, G, Sandstrom, M, Wilen, J, Tynes, T, Haugsdal, B, Hauger E, 1998: Comparison of symptoms experienced by users of analogue and digital mobile phones: a Swedish-Norwegian epidemiological study. Arbetslivsrapport 23.
Hardell, L, Reizenstein, J, Johansson, B, Gertzen, H, Mild, KH, 1999: Angiosarcoma of the scalp and use of a cordless (portable) telephone. Epidemiology 10(6):785-786.
Hardell, L, Nasman, A, Pahlson, A, Hallquist, A, Hansson Mild, K, 1999: Use of cellular telephones and the risk for brain tumours: A case-control study. Int J Oncol 15(1):113-116.
Hardell, L, Nasman, A, Hallquist, A, 2000: "Case-control study of radiology work, medical X-ray investigations and use of cellular telephones as risk factors". J of General Medicine. <www.medscape.com/Medscape/GeneralMedicine/journal/2000/v02.n03/>
Hayes, R.B., Morris Brown, L., Pottern, L.M., Gomez, M., Kardaun, J.W.P.F., Hoover, R.N., O'Connell, K.J., Sutsman, R.E. and Nasser, J., 1990: Occupational and Risk for Testicular Cancer: A Case Control Study. International Journal of Epidemiology, 19, No.4, pp 825-831.
Heller, J.H., and Teixeira-Pinto, A.A., 1959: “A new physical method of creating chromosome aberrations”. Nature, Vol 183, No. 4665, March 28, 1959, pp 905-906.
Hladky, A, Musil, J, Roth, Z, Urban, P, Blazkova, V, 1999: Acute effects of using a mobile phone on CNS functions. Cent Eur J Public Health 7(4):165-167.
Hocking, B., Gordon, I.R., Grain, H.L., and Hatfield, G.E., 1996: “Cancer incidence and mortality and proximity to TV towers”. Medical Journal of Australia, Vol 165, 2/16 December, pp 601-605.
Hocking, B, 1998: Preliminary report: symptoms associated with mobile phone use. Occup Med (Lond);48(6):357-360.
Hofgartner F, Muller T, Sigel H, 1996: "Could C- and D-network mobile phones endanger patients with pacemakers?". Dtsch Med Wochenschr 121(20): 646-652,. [Article in German]
Huber, R., Graf, T., Cote, K.A., Wittmann, L., Gallman, E., Matter, D., Schuderer, J., Kuster, N., Bordely, A.A. and Achermann, P., 2000: "Exposure to high-frequency electroamgnetic field during waking affects human sleep EEG". Neuroreport 11(15): 3321-3325.
Ivaschuk, O.I., Jones, R.A., Ishida-Jones, T., Haggren, Q., Adey, W.R. and Phillips, J.L., 1997: "Exposure of nerve growth factor-treated PC12 rat pheochromscytoma cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression". Bioelectromagnetics 18(3): 223-229.
Johansen, C., Boice, J.D., McLaughlin, J.K. and Olsen, J., 2001: "Cellular telephones and cancer - a nationwide cohort study in Denmark". J Nat Cancer Inst 93(3): 203-207.
Kallen, B., Malmquist, G., and Moritz, U., 1982: “Delivery Outcome among Physiotherapists in Sweden: is Non-ionizing Radiation a Fetal Hazard? Archives of Environmental Health, 37(2): 81-84.
Kellenyi, L, Thuroczy, G, Faludy, B, Lenard, L, 1999: Effects of mobile GSM radiotelephone exposure on the auditory brainstem response (ABR). Neurobiology 7:79-81.
Khudnitskii, SS, Moshkarev, EA, Fomenko, TV, 1999: [On the evaluation of the influence of cellular phones on their users]. [Article in Russian] Med Tr Prom Ekol (9):20-24.
Kolomytkin, O., Kuznetsov, V., Yurinska, M, Zharikova, A., and Zharikov, S., 1994: “Response of brain receptor systems to microwave energy exposure”. pp 195-206 in “On the nature of electromagnetic field interactions with biological systems”, Ed Frey, A.H., Publ. R.G. Landes Co.
Koivisto, M, Revonsuo, A, Krause, C, Haarala, C, Sillanmaki, L, Laine, M, Hamalainen, H, 2000: Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. Neuroreport 11(2):413-415.
Kolodynski, A.A. and Kolodynska, V.V., 1996: “Motor and psychological functions of school children living in the area of the Skrunda Radio Location Station in Latvia”. The Science of the Total Environment, Vol 180, pp 87-93.
König, H.L., 1974: “Behavioural changes in human subjects associated with ELF electric fields”. In “ELF and VLF electromagnetic field effects”, M.A. Persinger Ed, Publ. Plenum Press, New York.
Krause, C.M., Sillanmaki, L., Koivisto, M., Haggqvist, A., Saarela, C., Revonsuo, A., Laine, M. and Hamalainen H., 2000: "Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task". Neuroreport 11(4): 761-764.
Kwee, S, Raskmark, P, 1997: Radiofrequency electromagnetic fields and cell proliferation. Presented at the Second World Congress for Electricity and Magnetism in Biology and Medicine, Bologna, Italy, June.
Lai, H. and Singh, N.P., 1995: “Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells”. Bioelectromagnetics, Vol 16, pp 207-210, 1995.
Lai, H. and Singh, N.P., 1996: “Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation”. Int. J. Radiation Biology, 69 (4): 513-521.
Lai, H., and Singh, N.P., 1997: “Melatonin and Spin-Trap compound Block Radiofrequency Electromagnetic Radiation-induced DNA Strands Breaks in Rat Brain Cells.” Bioelectromagnetics, 18:446-454.
Lamble D, Kauranen T, Laakso M, Summala H, 1999: "Cognitive load and detection thresholds in car following situations: safety implications for using mobile (cellular) telephones while driving". Accid Anal Pre ;31(6):617-623.
Larsen, A.I., Olsen, J., and Svane, O., 1991: "Gender specific reproductive outcome and exposure to high frequency electromagnetic radiation among physiotherapists". Scand. J. Work Environ. Health, Vol.17, pp 324-329.
Lebedeva, N.N., Sulimov, A.V., Sulimova, O.P., Kotrovskaya, T.I. and Galius, T., 2000: "Cellular phone electromagnetic field effects on the bioelectric activity of human brain". Crit. Rev Biomed Eng 28(1-2): 323-327.
Lilienfeld, A.M., Tonascia, J., and Tonascia S., Libauer, C.A., and Cauthen, G.M., 1978: “Foreign Service health status study - evaluation of health status of foreign service and other employees from selected eastern European posts”. Final Report (Contract number 6025-619073) to the U.S. Dept of State, July 31, 1978.
Litovitz, T.A., Krause, D., Penafiel, M., Elson, E.C. and Mullins, J.M., 1993: "The role of coherence time in the effect of microwaves on ornithine decarboxylase activity". Bioelectromagnetics 14(5): 395-403.
Maes A, Collier M, Van Gorp U, Vandoninck S, Verschaeve L, 1997: Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat Res 393(1-2): 151-156.
Magone, I., 1996: "The effect of electromagnetic radiation from the Skrunda radio location station on Spirodela polyrhiza (L.) Schleiden cultures". Sci Total Env 180: 75-80.
Mann, K, Roschke, J, 1996: Effects of pulsed high-frequency electromagnetic fields on human sleep. Neuropsychobiology 33(1):41-47.
Milham, S., 1982: "Mortality from leukemia in workers exposed to electric and magnetic fields". New England J. of Med., 307: 249-250.
Milham S., 1985: "Mortality in workers exposed to electromagnetic fields. Environ Health Perspectives 62:297-300.
Milham, S., 1988: "Increased mortality in amateur radio operators due to lymphatic and hematopoietic malignancies". Am. J. Epidemiology, Vol 127, No.1, pp 50-54.
Milham, S., 1996: "Increased incidence of cancer in a cohort of office workers exposed to strong magnetic fields". Am. J. Ind. Med. 30(6): 702-704.
Morgan, R.W., Kelsh, M.A., Zhao, K., Exuzides, K.A., Heringer, S and Negrete, W., 2000: "Radiofrequency exposure and mortality from cancer of the brain and lymphatic/hematopoietic systems". Epidemiology 11(2): 118-127.
Moscovici, B., Lavyel, A. and Ben Itzhac, D., 1974: "Exposure to electromagnetic radiation among workers". Family Physician 3(3): 121.
Muscat, J., Malkin, M.G., Thompson, S., Sjore, R.E., Stelman, S.D., McRee, D, Neugut, A.I. and Wynder, E.I., 2000: "Handheld cellular telephone use and risk of brain cancer". JAMA Dec 20, 284(23): 3001-3007.
Naegeli B, Osswald S, Deola M, Burkart F, 1996: "Intermittent pacemaker dysfunction caused by digital mobile telephones". J Am Coll Cardiol 27(6):1471-1477.
Nawrot, P.S., McRee, D.I. and Galvin, M.J., 1985: "Teratogenic, biochemical and histological studies with mice prenatally exposed 2.45 GHz microwave radiation". Radiation Research 102(1): 35-45.
Occhetta E, Plebani L, Bortnik M, Sacchetti G, Trevi G, 1999: "Implantable cardioverter defibrillators and cellular telephones: is there any interference?". Pacing Clin Electrophysiol 22(7): 983-989.
Oscar, K.J. and Hawkins, T.D., 1997: "Microwaves alteration of the blood-brain barrier system of rats". Brain Research 126: 281-293.
Ouellet-Hellstrom, R. and Stewart, W.F., 1993: “Miscarriages among Female Physical Therapists who report using radio- and microwave- frequency electromagnetic radiation.” American J. of Epidemiology, 138 (10): 775-86.
Persson, B.R.R., Salford, L.G. and Brun, A., 1997: "Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication". Wireless Network 3: 455-461.
Penafiel, L.M., Litovitz, T., Krause, D., Desta, A. and Mullins, J.M., 1997: "Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells". Bioelectromagnetics 18(2): 132-141.
Perry, F.S., Reichmanis, M., Marino, A. and Becker, R.O., 1981: "Environmental power-frequency magnetic fields and suicide". Health Phys 41(2): 267-277.
Phelan, A.M., Lange, D.G., Kues, H.A, and Lutty, G.A., 1992: “Modification of membrane fluidity in Melanin-containing cells by low-level microwave radiation”. Bioelectromagnetics 13: 131-146.
Philips, J.L., Haggren, W., Thomas, W.J., Ishida-Jones, T. and Adey, W.R., 1992: "Magnetic field-induced changes in specific gene transcription". Biochem Biophys Acta 1132(2): 140-144.
Philips, J.L., Haggren, W., Thomas, W.J., Ishida-Jones, T. and Adey, W.R., 1993: "Effect of 72 Hz pulsed magnetic field exposure on ras p21 expression in CCRF-CEM cells". Cancer Biochem Biophys 13(3): 187-193.
Phillips, J.L., Ivaschuk, O., Ishida-Jones, T., Jones, R.A., Campbell-Beachler, M. and Haggnen, W.,1998: "DNA damage in molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro". Bioelectrochem Bioenerg 45: 103-110.
Polk, C., 1982: "Schumann Resonances". In CRC Handbook of Atmospherics, Vol 1, pp 111-177,
Prausnitz, S. and Susskind, C., 1962: "Effects of chronic microwave irradiation of mice". IRE Trans Biomend Electron 9:104-108.
Preece, AW, Iwi, G, Davies-Smith, A, Wesnes, K, Butler, S, Lim, E, Varey, A, 1999: Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol 75(4):447-456.
Quan, R., Yang, C., Rubinstein, S., Lewiston, N.J., Sunshine, P., Stevenson, D.K. and Kerner, J.A., 1992: "Effects of microwave radiation on anti-infective factors in human milk". Pediatrics 89(4):667-669.
Redelmeier, D.A. and Tibshirani, R.J., 1997: "Association between cellular-telephone calls and motor vehicle collisions". New England J Medicine 336(7): 453-458.
Repacholi, MH, Basten, A, Gebski, V, Noonan, D, Finnie, J, Harris, AW, 1997: Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Radiat Res 147(5):631-640.
Robinette, C.D., Silverman, C. and Jablon, S., 1980: “Effects upon health of occupational exposure to microwave radiation (radar)”. American Journal of Epidemiology, 112(1):39-53, 1980.
Rothman KJ, Loughlin JE, Funch DP, Dreyer NA.,1996: Overall mortality of cellular telephone customers. Epidemiology 7:303-305.
Salford, L.G., Brun, A., Sturesson, K., Eberhardt, J.L. and Persson, B.R.R., 1994: Permeability of the Blood-Brain Barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz.
Savitz, D.A., Checkoway, H. and Loomis, D.P., 1998a: "Magnetic field exposure and neurodegenerative disease mortality among electric utility workers". Epidemiology 9(4):398-404.
Savitz, D.A,, Loomis, D.P. and Tse, C.K., 1998b: "Electrical occupations and neurodegenerative disease: analysis of U.S. mortality data". Arch Environ Health 53(1): 71-74.
Savitz, D.A., Liao, D., Sastre, A., Klecjner, R.C., and Kavet, R., 1999: "Magnetic field exposure and cardiovascular disease mortality among electric utility workers". Am. J. Epidemiology, 149(2): 135-142.
Schirmacher, A, Bahr, A, Kullnick, U, Stoegbauer, F, 1999: Electromagnetic fields (1.75 GHz) influence the permeability of the blood-brain barrier in cell culture model. Presented at the Twentieth Annual Meeting of the Bioelectromagnetics Society, St. Pete Beach, FL, June.
Schlegel RE, Grant FH, Raman S, Reynolds D 1998: "Electromagnetic compatibility study of the in-vitro interaction of wireless phones with cardiac pacemakers". Biomed Instrum Technol 32(6): 645-655.
Shandala, M.G., Dumanskii, U.D., Rudnev, M.I., Ershova, L.K., and Los I.P., 1979: “Study of Non-ionizing Microwave Radiation Effects on the Central Nervous System and Behavior Reactions”. Environmental Health Perspectives, 30:115-121.
Sobel, E., Davanipour, Z., Sulkava, R., Erkinjuntti, T., Wikstrom, J., Henderson, V.W., Bucjwalter, G., Bowman, D. and Lee, P-J., 1995: "Occupations with exposure to electromagnetic fields: a possible risk factor for Alzheimer’s Disease". Am J Epidemiol 142(5): 515-524.
Sobel, E., Dunn, M., Davanipour, D.V.M., Qian, M.S. and Chui, M.D., 1996: "Elevated risk of Alzheimer’s disease among workers with likely electromagnetic field exposure. Neurology 47(12): 1477-1481.
Stang, A., Anastassiou, G., Ahrens, W., Bromen, K., Bornfeld, N. and Jockel, K-H., 2001: "The possible role of radiofrequency radiation in the development of Uveal Melanoma". Epidemiology 12(1): 7-12.
Szmigielski, S., Bielec, M., Lipski, S. and Sokolska, G., 1988: "Immunological and cancer-related aspects of exposure to low level microwave and radiofrequency fields". In: Modern Bioelectricity (Marino A ed). New York, Marcel Bekker, pp861-925.
Szmigielski, S., 1996: “Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation”. Science of the Total Environment, Vol 180, 1996, pp 9-17.
Szmigielski, S., Bortkiewicz, A., Gadzicka, E., Zmyslony, M. and Kubacki, R., 1998: "Alteration of diurnal rhythms of blood pressure and heart rate to workers exposed to radiofrequency electromagnetic fields". Blood Press. Monit, 3(6): 323-330.
Thomas, T.L., Stolley, P.D., Stemhagen, A., Fontham, E.T.H., Bleecker, M.L., Stewart, P.A., and Hoover, R.N., 1987: "Brain tumor mortality risk among men with electrical and electronic jobs: A case-control study". J. Nat. Canc. Inst., Vol 79, No.2, pp 233-238., August 1987.
Tice, R., Hook, G. and McRee, D.I., 1999: "Genetic Damage from Cellphone Radiation". Proc. 30th Annual Meeting of the Environmental Mutagen Society, Washington DC, March 1999.
Timchenko, O.I., and Ianchevskaia, N.V., 1995: “The cytogenetic action of electromagnetic fields in the short-wave range”. Psychopharmacology Series, Jul-Aug;(7-8):37-9.
Trigano AJ, Azoulay A, Rochdi M, Campillo, A., 1999: "Electromagnetic interference of external pacemakers by walkie-talkies and digital cellular phones: experimental study. Pacing Clin Electrophysiol 22(4 Pt 1): 588-593.
Tynes, T., Hannevik, M., Anderson, A., Vistnes, A.I. and Haldorsen, T., 1996: “Incidence of breast cancer in Norewegian female radio and telegraph operators”. Cancer causes Control., 7(2): 197-204.
Van Wijngaarden, E., Savitz, D.A., Kleckner, R.C., Dai, J. and Loomis, D., 2000: "Exposure to electromagnetic fields and suicide among electric utility workers: a nested case-control study". Occupational and Environ Medicine, 57: 258-263.
Velizarov, S, Raskmark, P, Kwee, S, 1999: The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem Bioenerg 48(1):177-180.
Verschaeve, L., Slaets, D., Van Gorp, U., Maes, A. and Vanderkom, J., 1994: "In vitro and in vivo genetic effects of microwaves from mobile phone frequencies in human and rat peripheral blood lymphocytes". Proceedings of Cost 244 Meetings on Mobile Communication and Extremely Low Frequency field: Instrumentation and measurements in Bioelectromagnetics Research. Ed. D, Simunic, pp 74-83.
Vijayalaxmi, B.Z., Frei, M.R., Dusch, S.J., Guel, V., Meltz, M.L. and Jauchem, J.R., 1997a: "Frequency of micronuclei in the peripheral blood and bone marrow of cancer-prone mice chronically exposed to 2450 MHz radiofrequency radiation". Radiation Research, 147: 495-500.
Violanti, J.M. and Marshall, J.R., 1996: "Cellular phones and traffic accidents: an epidemiological approach". Accid Anal Prev 28(2): 265-270.
Von Klitzing, L, 1995: Low-frequency pulsed electromagnetic fields influence EG of man. Phys. Medica 11:77-80.
Yao. K.T., 1982: "Cytogenetic consequences of microwave irradiation on mammalian cells incubated in vitro". J Hered 73(2): 133-138.
Youbicier-Simo, BJ, Lebecq, JC, Bastide, M, 1998: Mortality of chicken embryos exposed to EMFs from mobile phones. Presented at the Twentieth Annual Meeting of the Bioelectromagnetics Society, St. Pete Beach, FL, June.
Weyandt, T.B., Schrader, S.M., Turner, T.W. and Simon, S.D., 1996: "Semen analysis of military personnel associated with military duty assignments". Reprod Toxicol 10(6):521-528.
Zaret, M.M., 1977: "Potential hazards of hertzian radiation and tumors. NY State J Med,146-147.
Environmental Management and Design Division
P.O. Box 84
Lincoln University
Canterbury, New Zealand
Dr. George Carlo
Interview:
Cell phones will create Paul Fitzgerald on Skull Penetration of Cell Phone Radiation in Children
an unprecedented
rise in brain & eye cancers <paul@emfnews.org> http://www.emfnews.org
Cell Industry: "There are no adverse health effects"
Electro-hypersensitivity because of cell phone radiation
Update on Dr. Neil Cherry, Dec. 2, 2007:
Subject: Dr Neil Cherry
From: tlbarr@clear.net.nz
Date: Fri, November 30, 2007 12:56 am
To: Editor (Ken Adachi)
People around the world who have known Dr Neil Cherry personally or have been
familiar with his work will be deeply saddened to learn that he died on 24 May 2003.
For eighteen months he had been coping with increasing mobility problems caused by
Motor Neurone disease, but his mind remained as clear as ever and even in the last
week of his life he was still focussed on the science that had been such an
absorbing passion in his life. Though he could no longer use his computer he could
still speak and until the day before he died he was supervising the editing of chapters of his latest book.
Knowing how long and persistently he had worked towards the development of windpower,
his wife Gae arranged for some strong-armed friends to drag his wheelchair up the
steep slope at Gebbies Pass to let him see the erection of the first windmill by
Windflow, the company of which he was Chairman of the Board. The brass plate on the
mill reads Neil.
He continued to serve science and the health and welfare of people around the world
when many others would have given up the struggle, and through all his illness, as
through all his career, he had wonderful support from his wife Gae.
The papers written by Dr Cherry will continue to be available on this website.
Dr Neil Cherry, held the position of Associate Professor of Environmental Health at
Lincoln University, and had a professional scientific background in physics,
biophysics, meteorology, Agricultural and Human Biometeorology, renewable energy,
energy efficiency and environmental epidemiology.
Environmental Health involves assessing the health impacts of environmental toxins
and proposing solutions based on efficient, smart and safer technology, engineering,
planning and strategies that are consistent with the quadruple bottom line. The
quadruple bottom line takes into account environmental, social, financial and
cultural factors.
Professor Cherry had skills of teaching and research on the climate, health effects
of weather on plants, animals and people and the health effects of air pollution and
viruses, the academic area of Biology, Biophysics and Environmental Epidemiology. Dr
Cherry was also an elected Regional Councillor on Environmental Canterbury, since
1992. From 1995 he had been the Chair of the Regional Planning Committee. Thus he
was responsible for developing plans to clean up the environment. He was frequently
involved in resource consent hearings for applications seeking to release
contaminants to the environment.
Dr Cherry had been very familiar with environmental law and its linkage to
scientific evidence. The main New Zealand law applied to the plans and resource
consents is the Resource Management Act (1991) [RMA]. The RMA law requires decisions
to avoid, remedy or mitigate any potential or actual adverse affects of activities
on the environment. In the RMA the Environment includes people and communities.
Effects include cumulative effects and Any potential effects of low probability that
have a high potential impact , Section 3, RMA.
Back in 1994 Dr Cherry was invited by a local primary school (Opawa) to present
information on the possible health effects of a cell site that was proposed to be
installed next to the infant department of the school. He explained to the school
meeting that the law contains the precautionary approach of having to deal with
potential adverse effects on the environment including people and children.
Integrating his knowledge from classical physics involving resonant absorption,
showed that the frequency of the cellphone radiation produced a half wavelength that
match the child's size. Therefore children were highly vulnerable for any possible
health effects. He therefore recommended that the school declined the offer. The
school voted by over 80 percent to reject the offer to install a cell site adjacent
to the infant teaching block.
Since this time most of Professor Cherry's research had been focused on the health
effects of electromagnetic fields and radiation. In November 1994 he was an expert
witness in the first cell site base station appeal in New Zealand assisting the
local residents to win the case by the court rejecting the request by BellSouth for
a 200µW/cm² public exposure standard. The court set the allowable level at 2µW/cm²,
based on evidence of childhood leukaemia at 2.4µW/cm², the law requiring it to be
avoided. Dr Cherry had been surprised to find how much published science there is to
show that across the electromagnetic spectrum the ELF fields and RF/MW radiation
damage the cellular DNA, alter cellular calcium ions, reduce melatonin, and altar
many cellular functions. Radiofrequency and Microwaves, including cell phone
radiation, are genotoxic shown by many independent studies published since the first
in 1959. Therefore they are carcinogenic. Microwaves also open the Blood Brain
Barrier, letting natural and external brain damaging chemicals into the brain and
CNS. Dr Cherry also discovered that epidemiological studies of exposed workers and
the residents confirm, through classical public health assessment, that
electromagnetic fields and radiation are a Ubiquitous Universal Genotoxic
Carcinogen, causing increased rates of Cancer, Cardiac, Reproductive and
Neurological health effects in exposed human populations, with a safe level of zero
exposure.
Dr Cherry's standing and credibility was confirmed on 1 January 2002 by the award of
a Royal Honour of Officer of New Zealand Order of Merit (O.N.Z.M.). The citation for
his award shows that it is for his services to Science, Education and Community,
including his research and teaching work on Environmental Epidemiology and the
health effects of electromagnetic radiation.
Dr Cherry's own research, published in the Natural Hazards journal, Cherry (2002),
shows that a natural electromagnetic signal, called the Schumann Resonances,
generated by a tropical thunderstorms, and radiating around the world in the
resonant cavity created between earth s surface and the bottom layer of the
ionosphere, is resonantly absorbed, detected and responded to by the brain because
of the ELF frequency matching the frequency range of the spectrum of the brain EEG
rhythms.
The Schumann Resonance signals provide synchronization of the ELF, daily and annual
functions of the brain. The latter two are in support of the normal diurnal and
seasonal solar activity. This provides the biophysically plausible mechanism to
explain how sunspots on the sun, solar storms and sunspot cycles modulate cancer,
cardiac, reproductive and neurological effects through modulating the
melatonin/serotonin cycle in human populations. This confirms the importance of and
sensitivity of the melatonin protective activity, including being a highly potent
antioxidant being with naturally produced (by breathing) oxygen free radicals.
Cherry (2002) predicted that since electrical workers and physiotherapists are
occupationally exposed to electromagnetic fields that are about a million times
higher than the Schumann Resonance signal, would have higher rates of cancer,
cardiac reproductive and neurological effects. Multiple independent epidemiological
studies confirm that this is true. It is also scientifically sensible and proven
that placing a cellular telephonenext to your head, producing a signal around a billion times stronger than the Schumann Resonance signal, causes serious
alterations of brain activity, leading to elevated rates of a road accidents,
headaches, nausea, dizziness, loss of concentration and memory, DNA damage and
enhanced cell death rates, and significant increases in brain cancer rates. All of
this is confirmed by many published studies. Biological organs, including the brain,
are flexible, variable and adoptive biological organs. For the brain s
electromagnetic thinking activity to be coherent and stable enough for intelligence
to develop, Dr Cherry had concluded that the ELF synchronization of the brain
electromagnetic activity by the Schumann Resonance Signal in a has provided a
mechanism that allowed intelligence to develop.
To find the information on this site that allows you to investigate the above claims
you may wish to read the abstracts of relevant papers and reports.
(Original source is no longer online at: http://www.neilcherry.com/documents.php
While this website was still online, I saved all of their documents and will eventually upload all of them to this index page...Ken Adachi)
Epidemiology is fundamental science and the strongest evidence for the assessment of human health effects of disease agents. Moving from a possible association to a causal effect the assessment principles are followed by the Sir Austin Bradford-Hill approach. When dealing with the health effects of electromagnetic fields and radiation some specific and important epidemiological principles must be used. Exposure assessments are vital. Electromagnetic fields and radiation are invisible, odourless, silent and tasteless, and are ubiquitous. Therefore the basic physics and engineering principles that explain the nature and strength of these fields are fundamental. The basic methods of environmental epidemiology involve identifying the disease rates in an exposed group to compare the disease rates in a non-exposed group, with no confounders to confuse the results. A major problem with EMF and EMR is that in most communities there is no non-exposed reference group because we live in homes with electromagnetic fields from electric power wires and appliances and we can receive radio, TV and cellphone signals all the time in our homes. Everyone in the world is exposed to radio short-waves and satellite microwaves. This has led to the Ubiquitous Exposure (No Non-exposed Group) Principle, an extension of the Healthy Worker Effect. For studies around Radio, TV and cell site transmission towers, the horizontal antenna patterns are used to focus most of the RF energy to where most of the receiving population lives. The vertical antenna patterns are a function of the frequency of the carrier signal. They have main beams and many side-lobes which produce complex radial undulating signal intensity, varying with distance from the tower. For studies of people living in the vicinity of radio, TV and cellphone towers it is vital that the radiation patterns and population patterns are understood. Studies that appropriately match exposure with cancer and other health effects, show strong, consistent and significant dose-response relationships indicating causal linkage between electromagnetic fields and radiation and human health effectsEpidemiology is fundamental science and the strongest evidence for the assessment of human health effects of disease agents. Moving from a possible association to a causal effect the assessment principles are followed by the Sir Austin Bradford-Hill approach. When dealing with the health effects of electromagnetic fields and radiation some specific and important epidemiological principles must be used. Exposure assessments are vital. Electromagnetic fields and radiation are invisible, odourless, silent and tasteless, and are ubiquitous. Therefore the basic physics and engineering principles that explain the nature and strength of these fields are fundamental. The basic methods of environmental epidemiology involve identifying the disease rates in an exposed group to compare the disease rates in a non-exposed group, with no confounders to confuse the results. A major problem with EMF and EMR is that in most communities there is no non-exposed reference group because we live in homes with electromagnetic fields from electric power wires and appliances and we can receive radio, TV and cellphone signals all the time in our homes. Everyone in the world is exposed to radio short-waves and satellite microwaves. This has led to the Ubiquitous Exposure (No Non-exposed Group) Principle, an extension of the Healthy Worker Effect. For studies around Radio, TV and cell site transmission towers, the horizontal antenna patterns are used to focus most of the RF energy to where most of the receiving population lives. The vertical antenna patterns are a function of the frequency of the carrier signal. They have main beams and many side-lobes which produce complex radial undulating signal intensity, varying with distance from the tower. For studies of people living in the vicinity of radio, TV and cellphone towers it is vital that the radiation patterns and population patterns are understood. Studies that appropriately match exposure with cancer and other health effects, show strong, consistent and significant dose-response relationships indicating causal linkage between electromagnetic fields and radiation and human health effects.
The International Agency for Research on Cancer (IARC) is a World Health Organization Department, with the responsibility to assess carcinogenic effects of environmental and occupational toxins. Epidemiology is the fundamental science and the strongest evidence for the assessment of human health effects of disease agents. In 1974 an IARC review concluded that animal carcinogenicity had not been demonstrated and human studies showed that benzene mixtures resulted in damage to the haematopoietic system with suggestion of leukaemia from several case studies and one Japanese case-control study. In 1982 the IARC re-evaluation reported that workers and the general public were exposed to Benzene from numerous sources including chemicals and the production and use of gasoline. IARCs 1982 re-evaluation concluded that benzene was a human carcinogen. Therefore it is appropriate to investigate what the level of evidence was for Benzene in 1982. If we apply the same principles and level of evidence to radar and microwave exposures up to 1982, would the evidence have reached or exceeded the IARC evaluation standard? This review shows that the evidence that microwaves enhanced the rates of cancer in people was stronger in 1982 than the evidence for Benzene.The International Agency for Research on Cancer (IARC) is a World Health Organization Department, with the responsibility to assess carcinogenic effects of environmental and occupational toxins. Epidemiology is the fundamental science and the strongest evidence for the assessment of human health effects of disease agents. In 1974 an IARC review concluded that animal carcinogenicity had not been demonstrated and human studies showed that benzene mixtures resulted in damage to the haematopoietic system with suggestion of leukaemia from several case studies and one Japanese case-control study. In 1982 the IARC re-evaluation reported that workers and the general public were exposed to Benzene from numerous sources including chemicals and the production and use of gasoline. IARCs 1982 re-evaluation concluded that benzene was a human carcinogen. Therefore it is appropriate to investigate what the level of evidence was for Benzene in 1982. If we apply the same principles and level of evidence to radar and microwave exposures up to 1982, would the evidence have reached or exceeded the IARC evaluation standard? This review shows that the evidence that microwaves enhanced the rates of cancer in people was stronger in 1982 than the evidence for Benzene.
C)EMR spectrum principleSize: 12 pages, 215 KB.
http://educate-yourself.org/cn/EMR-Spectrum-Principle-20Sep2002-Dr-Neil-Cherry.pdf
Abstract:
The electromagnetic spectrum has a very wide range of frequencies. Understanding how these various frequencies interact with human bodies is very important for appreciating how these signals and fields can cause biological effects when tissues or whole bodies are exposed. Biophysics is a very important scientific discipline for understanding how the natural body electromagnetic and biological systems work and how external signals from extremely low-frequency fields and radiofrequency and microwave radiation enter into and interactive with the body systems and cells. The basic physics principles involved are resonance interaction and absorbance and energy converting and conservation. The failure to understand these principles leads to errors in the setting of standards and the inappropriate interpretation of epidemiological results.
"Our frame of reference determines what we look at and how we look. And as a consequence, this determines what we find."
Burke J, The Day the Universe Changed, 1985.
Our preconceived views strongly influence our opinions and decisions. People almost universally view the human (mammal) body as a biological organ with biochemical processes controlling biological cells. This fails to recognize the vital role of biophysics with its electromagnetic signals carrying out vital functions in the brain, central nervous system, heart, motor neuron system and in all cells. Oscillating electromagnetic signals, produced by and interacting with ions, such as calcium ions, are active in all cells for cell-to-cell communication, gap junctions and voltage-gated ion channels. Phase locked loop detection systems are widespread in cells and especially neurons. The heart and brain are monitored using the ECG and EEG electromagnetic detection systems. Classical physics processes involve resonant absorption and interference with the natural EMR/EMF signals. This has been causally demonstrated with external ELF signals altering the ELF calcium ion oscillations in brain and heart tissue. Understanding and appreciating this biophysical science, opening your mind to the genotoxic evidence and considering the epidemiological evidence, leads to a major paradigm shift. External EMR/EMF signals penetrate human bodies, resonantly interacting with cellular processes, altering cellular calcium ions, reducing melatonin and damaging DNA. Everyone has their whole body exposed to these genotoxic signals showing that EMR/EMF is a Ubiquitous Universal Genotoxic Carcinogen, that causes elevation of the rates of a wide range of cancer, cardiac, reproductive and neurological diseases and death in human populations. This paradigm is confirmed by multiple independent papers showing DNA damage and a body of epidemiological studies showing elevated sickness and death rates for all of these health effects in electrical workers and many also at residential exposure levels, many involving dose-response relationships pointing to a safe threshold of zero exposure, consistent with EMR/EMF being a genotoxic carcinogen.
Size: 67 pages, 943 KB.
Cherry Environmental Health Consulting Ltd
(Site managed by Evanta Solutions.)
All information posted on this web site is
the opinion of the author and is provided for educational purposes only.
It is not to be construed as medical advice. Only a licensed medical doctor
can legally offer medical advice in the United States. Consult the healer
of your choice for medical care and advice.